Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Res Perspect ; 12(2): e1186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38511246

RESUMEN

We conducted pharmacokinetic research wherein salcaprozate sodium (SNAC) was utilized as a penetration enhancer by incorporating it into pancreatic kininogenase (PK) to improve the bioavailability of pancreatic kininogenase enteric-coated tablets. We conducted in vitro studies on PK using the Caco-2 cell model and quantified PK levels using the enzyme-linked immunosorbent assay (ELISA) method. We conducted methodological verification by blending SNAC and PK powders into enteric-coated capsules, and studied the pharmacokinetic characteristics. Based on the PK transport assay, the cumulative permeation rates of the test group that employed a SNAC to PK ratio of 32:1, 16:1, 8:1, 4:1, and 2:1 were 13.574%, 7.597%, 10.653%, 3.755%, and 2.523%, respectively. We conducted a uniformity test on the powder that contained a blend of SNAC and PK. The relative standard deviations (RSDs) for both the power containing SNAC and the power not containing SNAC were less than 10%. Based on the methodological verification, in vivo pharmacokinetic study of PK met the experimental requirements. As indicated by the results of in vivo pharmacokinetic research on rats, the test group (This group used SNAC) had a PK AUC0-12 h of 5679.747 ng/L*h and t1/2 of 4.569 h, while the control group (This group did not use SNAC) had a PK AUC0-12 h of 4639.665 ng/L*h and t1/2 of 3.13 h. This study has established a low-cost, environmentally friendly, and safe SNAC synthesis route with high process yield suitable for industrial production. SNAC demonstrates an absorption-enhancing effect on PK, and the optimal ratio of SNAC to PK is determined to be 32:1.


Asunto(s)
Caprilatos , Calicreínas , Humanos , Ratas , Animales , Administración Oral , Células CACO-2
2.
Nat Commun ; 13(1): 6346, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289237

RESUMEN

As a promising high mobility p-type wide bandgap semiconductor, copper iodide has received increasing attention in recent years. However, the defect physics/evolution are still controversial, and particularly the ultrafast carrier and exciton dynamics in copper iodide has rarely been investigated. Here, we study these fundamental properties for copper iodide thin films by a synergistic approach employing a combination of analytical techniques. Steady-state photoluminescence spectra reveal that the emission at ~420 nm arises from the recombination of electrons with neutral copper vacancies. The photogenerated carrier density dependent ultrafast physical processes are elucidated with using the femtosecond transient absorption spectroscopy. Both the effects of hot-phonon bottleneck and the Auger heating significantly slow down the cooling rate of hot-carriers in the case of high excitation density. The effect of defects on the carrier recombination and the two-photon induced ultrafast carrier dynamics are also investigated. These findings are crucial to the optoelectronic applications of copper iodide.

3.
J Phys Condens Matter ; 33(46)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34412043

RESUMEN

Al doped ZnO (AZO) is a promising transparent conducting oxide to replace the expensive Sn doped In2O3(ITO). Understanding the formation and evolution of defects in AZO is essential for its further improvement. Here, we synthesize transparent conducting AZO thin films by reactive DC magnetron sputtering. The effects of oxygen flow ratio as well as the rapid thermal annealing (RTA) in different conditions on their structural and optoelectrical properties were investigated by a variety of analytical techniques. We find that AZO thin films grown in O-rich conditions exhibit inferior optoelectrical performance as compared with those grown in Zn-rich conditions, possibly due to the formation of excessive native acceptor defects and/or secondary phases (e.g. Al2O3). Temperature-dependent Hall measurements indicate that mobilities of these highly degenerate AZO films withN> 1020 cm-3are primarily limited by ionized and neutral impurities, while films with relatively lowN∼ 1019 cm-3exhibit a temperature-activated mobility owing to the grain-barrier scattering. AsNincreases, the optical band gap of AZO thin film increases as a result of Burstein-Moss shift and band gap narrowing. RTA treatments under appropriate conditions (i.e. at 500 °C for 60 s in Ar) can further improve the electrical properties of AZO thin film, with low resistivity of ∼6.2 × 10-4Ω cm achieved, while RTA at high temperature with longer time can lead to the formation of substantial sub-gap defect states and thus lowers the electron mobility. X-ray photoelectron spectroscopy provides further evidence on the variation of Al (Zn) content at the surface of AZO thin films with different processing conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...